TCP是什么?
具体的关于TCP是什么,我不打算详细的说了;当你看到这篇文章时,我想你也知道TCP的概念了,想要更深入的了解TCP的工作,我们就继续。它只是一个超级麻烦的协议,而它又是互联网的基础,也是每个程序员必备的基本功。首先来看看OSI的七层模型:
我们需要知道TCP工作在网络OSI的七层模型中的第四层——Transport层,IP在第三层——Network层,ARP在第二层——Data Link层;在第二层上的数据,我们把它叫Frame(帧),在第三层上的数据叫Packet(包),第四层的数据叫Segment(段)。 同时,我们需要简单的知道,数据从应用层发下来,会在每一层都会加上头部信息,进行封装,然后再发送到数据接收端。这个基本的流程你需要知道,就是每个数据都会经过数据的封装和解封装的过程。 在OSI七层模型中,每一层的作用和对应的协议如下:
TCP是一个协议,那这个协议是如何定义的,它的数据格式是什么样子的呢?要进行更深层次的剖析,就需要了解,甚至是熟记TCP协议中每个字段的含义。哦,来吧。
上面就是TCP协议头部的格式,由于它太重要了,是理解其它内容的基础,下面就将每个字段的信息都详细的说明一下。
Source Port和Destination Port:分别占用16位,表示源端口号和目的端口号;用于区别主机中的不同进程,而IP地址是用来区分不同的主机的,源端口号和目的端口号配合上IP首部中的源IP地址和目的IP地址就能唯一的确定一个TCP连接;
Sequence Number:用来标识从TCP发端向TCP收端发送的数据字节流,它表示在这个报文段中的的第一个数据字节在数据流中的序号;主要用来解决网络报乱序的问题;
Acknowledgment Number:32位确认序列号包含发送确认的一端所期望收到的下一个序号,因此,确认序号应当是上次已成功收到数据字节序号加1。不过,只有当标志位中的ACK标志(下面介绍)为1时该确认序列号的字段才有效。主要用来解决不丢包的问题;
Offset:给出首部中32 bit字的数目,需要这个值是因为任选字段的长度是可变的。这个字段占4bit(最多能表示15个32bit的的字,即4*15=60个字节的首部长度),因此TCP最多有60字节的首部。然而,没有任选字段,正常的长度是20字节;
TCP Flags:TCP首部中有6个标志比特,它们中的多个可同时被设置为1,主要是用于操控TCP的状态机的,依次为URG,ACK,PSH,RST,SYN,FIN。每个标志位的意思如下:
(1)URG:此标志表示TCP包的紧急指针域(后面马上就要说到)有效,用来保证TCP连接不被中断,并且督促中间层设备要尽快处理这些数据;
(2)ACK:此标志表示应答域有效,就是说前面所说的TCP应答号将会包含在TCP数据包中;有两个取值:0和1,为1的时候表示应答域有效,反之为0;
(3)PSH:这个标志位表示Push操作。所谓Push操作就是指在数据包到达接收端以后,立即传送给应用程序,而不是在缓冲区中排队;
(4)RST:这个标志表示连接复位请求。用来复位那些产生错误的连接,也被用来拒绝错误和非法的数据包;
(5)SYN:表示同步序号,用来建立连接。SYN标志位和ACK标志位搭配使用,当连接请求的时候,SYN=1,ACK=0;连接被响应的时候,SYN=1,ACK=1;这个标志的数据包经常被用来进行端口扫描。扫描者发送一个只有SYN的数据包,如果对方主机响应了一个数据包回来 ,就表明这台主机存在这个端口;但是由于这种扫描方式只是进行TCP三次握手的第一次握手,因此这种扫描的成功表示被扫描的机器不很安全,一台安全的主机将会强制要求一个连接严格的进行TCP的三次握手;
(6)FIN: 表示发送端已经达到数据末尾,也就是说双方的数据传送完成,没有数据可以传送了,发送FIN标志位的TCP数据包后,连接将被断开。这个标志的数据包也经常被用于进行端口扫描。
Window:窗口大小,也就是有名的滑动窗口,用来进行流量控制;这是一个复杂的问题,这篇博文中并不会进行总结的;
好了,基本知识都已经准备好了,开始下一段的征程吧。
三次握手又是什么?
TCP是面向连接的,无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接。在TCP/IP协议中,TCP协议提供可靠的连接服务,连接是通过三次握手进行初始化的。三次握手的目的是同步连接双方的序列号和确认号并交换 TCP窗口大小信息。这就是面试中经常会被问到的TCP三次握手。只是了解TCP三次握手的概念,对你获得一份工作是没有任何帮助的,你需要去了解TCP三次握手中的一些细节。先来看图说话。
多么清晰的一张图,当然了,也不是我画的,我也只是引用过来说明问题了,先对这张图进行简单的说明:
一开始Client和Server是两个互不相关的东西,来自不同的星球。但是这时的Server绑定了IP地址和端口号,在自己的地盘时刻的监听。这时的Server端所处的状态叫做LISTEN。
忽然有一天Client有事情要求Server帮忙,由于Server是TCP通信,所以它要先进行连接,然后才可以把要求Server的事情告诉它。为了连接,它调用了connect()这个函数,这时发送给Server的数据是SYN=1,seq=x,这时的Client段所处的状态叫做SYN_SENT。
Server接收到Client的连接请求以后,就会对这个请求的帧进行回复,所以原本阻塞的accept()函数就接收到一个连接请求,同时回复给Client的帧为SYN=1,seq=y,ACK=x+1。这时的Server端从上一个状态变为SYN_RCVD这个状态。
这时的Client收到了Server的应答,就会很高兴,但是它明白,这时的Server不是一个完全准备好的通信端,还需要它的第三次握手,所以它要对刚收到的帧进行确认。所以回复的数据帧是ACK=y+1。这时的Client就进入了连接建立的状态。当Server收到这个确认帧之后,Server也进入了连接建立的状态。但是这里注意,最后Client发送给Server的这个确认帧是没有数据的,因为这里没有seq的值,只是一个ACK的确认。具体能不能带数据,看下面解释。
通信连接都建立起来了,这时的Client就可以把要请求Server帮的忙告诉Server了,所以它会先发数据给Server,调用系统调用write发送数据。这时的seq=x+1,ACK=y+1(这两个号码都是接上面的)。然后Server系统调用接收数据。并对这个帧进行确认,ACK=x+2。注意一点:这个确认帧也没有携带数据,所以它不会占用序列号。
还有注意一点:序号的范围是无符号的32位整数,这个序号的值是会回绕的,初始值是随机设定的。
下面再说一下所谓的三次握手:
- 第一次握手:建立连接。客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x;然后,客户端进入SYN_SEND状态,等待服务器的确认;
- 第二次握手:服务器收到SYN报文段。服务器收到客户端的SYN报文段,需要对这个SYN报文段进行确认,设置Acknowledgment Number为x+1(Sequence Number+1);同时,自己自己还要发送SYN请求信息,将SYN位置为1,Sequence Number为y;服务器端将上述所有信息放到一个报文段(即SYN+ACK报文段)中,一并发送给客户端,此时服务器进入SYN_RECV状态;
- 第三次握手:客户端收到服务器的SYN+ACK报文段。然后将Acknowledgment Number设置为y+1,向服务器发送ACK报文段,这个报文段发送完毕以后,客户端和服务器端都进入ESTABLISHED状态,完成TCP三次握手。
完成了三次握手,客户端和服务器端就可以开始传送数据。以上就是TCP三次握手的总体介绍。
那四次分手呢?
当客户端和服务器通过三次握手建立了TCP连接以后,当数据传送完毕,肯定是要断开TCP连接的啊。那对于TCP的断开连接,这里就有了神秘的“四次分手”。
- 第一次分手:主机1(可以使客户端,也可以是服务器端),设置Sequence Number和Acknowledgment Number,向主机2发送一个FIN报文段;此时,主机1进入FIN_WAIT_1状态;这表示主机1没有数据要发送给主机2了;
- 第二次分手:主机2收到了主机1发送的FIN报文段,向主机1回一个ACK报文段,Acknowledgment Number为Sequence Number加1;主机1进入FIN_WAIT_2状态;主机2告诉主机1,我也没有数据要发送了,可以进行关闭连接了;
- 第三次分手:主机2向主机1发送FIN报文段,请求关闭连接,同时主机2进入CLOSE_WAIT状态;
- 第四次分手:主机1收到主机2发送的FIN报文段,向主机2发送ACK报文段,然后主机1进入TIME_WAIT状态;主机2收到主机1的ACK报文段以后,就关闭连接;此时,主机1等待2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,主机1也可以关闭连接了。
解释一下A在TIME-WAIT状态必须等待2MSL的原因?
第一:为了保证主机1发送的最后一个ACK报文能够到达主机2。这个ACK的报文有可能丢失,因为使处于LAST-ACK状态的主机2收不到FIN+ACK的确认报文,主机2会超时重传这个FIN+ACK报文段。而A就能够在2MSL的时间内收到这个重传的FIN+ACK的报文。接着主机1重传一次确认,重新启动2MSL计时器。如果主机1不在TIME-WAIT状态下等待一段时间,而是在发送完ACK报文后立即释放连接,那么就无法收到重传的FIN+ACK报文,因而也不会再一次的发送确认报文,那么主机2就不能按照正常的步骤进入到CLOSED状态。
第二:就是为了防止上一节提到“已失效的连接请求报文”出现在本连接中。主机1发送完最后一个ACK的报文后,再经过2MSL就可以是本连接持续的时间内所产生的所有报文都从网络中消失。这样就可以是下一个新的连接中不会出现这种旧的连接请求报文。不然的话,如果没有这个等待时间,那么万一立刻就有新的连接建立的需求,那么新的连接建立起来,上一次的报文还在网络中没有完全的消失,这样的话两次的报文就混在一起了,等待的这个时间就是延缓下次连接的建立时间,让本次的报文彻底的消失在网络中。
至此,TCP的四次分手就这么愉快的完成了。当你看到这里,你的脑子里会有很多的疑问,很多的不懂,感觉很凌乱;没事,我们继续总结
为什么要三次握手
既然总结了TCP的三次握手,那为什么非要三次呢?怎么觉得两次就可以完成了。那TCP为什么非要进行三次连接呢?在谢希仁的《计算机网络》中是这样说的:
为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误。
在书中同时举了一个例子,如下:
“已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。”
这就很明白了,防止了服务器端的一直等待而浪费资源。
为什么要四次分手
那四次分手又是为何呢?TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP是全双工模式,这就意味着,当主机1发出FIN报文段时,只是表示主机1已经没有数据要发送了,主机1告诉主机2,它的数据已经全部发送完毕了;但是,这个时候主机1还是可以接受来自主机2的数据;当主机2返回ACK报文段时,表示它已经知道主机1没有数据发送了,但是主机2还是可以发送数据到主机1的;当主机2也发送了FIN报文段时,这个时候就表示主机2也没有数据要发送了,就会告诉主机1,我也没有数据要发送了,之后彼此就会愉快的中断这次TCP连接。如果要正确的理解四次分手的原理,就需要了解四次分手过程中的状态变化。
- FIN_WAIT_1: 这个状态要好好解释一下,其实FIN_WAIT_1和FIN_WAIT_2状态的真正含义都是表示等待对方的FIN报文。而这两种状态的区别是:FIN_WAIT_1状态实际上是当SOCKET在ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即进入到FIN_WAIT_1状态。而当对方回应ACK报文后,则进入到FIN_WAIT_2状态,当然在实际的正常情况下,无论对方何种情况下,都应该马上回应ACK报文,所以FIN_WAIT_1状态一般是比较难见到的,而FIN_WAIT_2状态还有时常常可以用netstat看到。(主动方)
- FIN_WAIT_2:上面已经详细解释了这种状态,实际上FIN_WAIT_2状态下的SOCKET,表示半连接,也即有一方要求close连接,但另外还告诉对方,我暂时还有点数据需要传送给你(ACK信息),稍后再关闭连接。(主动方)
- CLOSE_WAIT:这种状态的含义其实是表示在等待关闭。怎么理解呢?当对方close一个SOCKET后发送FIN报文给自己,你系统毫无疑问地会回应一个ACK报文给对方,此时则进入到CLOSE_WAIT状态。接下来呢,实际上你真正需要考虑的事情是察看你是否还有数据发送给对方,如果没有的话,那么你也就可以 close这个SOCKET,发送FIN报文给对方,也即关闭连接。所以你在CLOSE_WAIT状态下,需要完成的事情是等待你去关闭连接。(被动方)
- LAST_ACK: 这个状态还是比较容易好理解的,它是被动关闭一方在发送FIN报文后,最后等待对方的ACK报文。当收到ACK报文后,也即可以进入到CLOSED可用状态了。(被动方)
- TIME_WAIT: 表示收到了对方的FIN报文,并发送出了ACK报文,就等2MSL后即可回到CLOSED可用状态了。如果FINWAIT1状态下,收到了对方同时带FIN标志和ACK标志的报文时,可以直接进入到TIME_WAIT状态,而无须经过FIN_WAIT_2状态。(主动方)
- CLOSED: 表示连接中断。
最后说一下三次握手的缺陷:SYN FLOOD
问题就出在TCP连接的三次握手中,假设一个用户向服务器发送了SYN报文后突然死机或掉线,那么服务器在发出SYN+ACK应答报文后是无法收到用户端的ACK报文的(第三次握手无法完成),这种情况下服务器端一般会重试(再次发送SYN+ACK给用户端)并等待一段时间后丢弃这个未完成的连接,这段时间的长度我们称为SYN Timeout,一般来说这个时间是分钟的数量级(大约为30秒-2分钟);一个用户出现异常导致伺服器的一个线程等待1分钟并不是什么很大的问题,但如果有一个恶意的攻击者大量类比这种情况,伺服器端将为了维护一个非常大的半连接列表而消耗非常多的资源。
数以万计的半连接,即使是简单的保存并遍历也会消耗非常多的CPU时间和内存,何况还要不断对这个列表中的IP进行SYN+ACK的重试。实际上如果伺服器的TCP/IP栈不够强大,最后的结果往往是堆栈溢出崩溃—即使伺服器端的系统足够强大,伺服器端也将忙于处理攻击者伪造的TCP连接请求而无暇理睬客户的正常请求(毕竟用户端的正常请求比率非常之小),此时从正常客户的角度看来,伺服器失去响应,这种情况我们称作:伺服器端受到了SYN Flood攻击(SYN洪水攻击)。
从防护角度来说,有几种简单的解决方法:
第一种是缩短SYN Timeout时间,由于SYN Flood攻击的效果取决于伺服器上保持的SYN半连接数,这个值=SYN攻击的频度x SYN Timeout,所以通过缩短从接收到SYN报文到确定这个报文无效并丢弃改连接的时间,例如设置为20秒以下(过低的SYN Timeout设置可能会影响客户的正常访问),可以成倍的降
低伺服器的负荷;
第二种方法是设置SYN Cookie,就是给每一个请求连接的IP位址分配一个Cookie,如果短时间内连续受到某个IP的重复SYN报文,就认定是受到了攻击,以后从这个IP地址来的包
会被一概丢弃。
可是上述的两种方法只能对付比较原始的SYN Flood攻击,缩短SYN Timeout时间仅在对方攻击频度不高的情况下生效,SYN Cookie更依赖于对方使用真实的IP位址,如果攻击者以数万/秒的速度发送SYN报文,同时利用SOCK_RAW随机改写IP报文中的源位址,以上的方法将毫无用武之地。
我想你应该懂了
总结到这里,也该结束了,但是对于TCP的学习远还没有结束。TCP是一个非常复杂的协议,这里稍微总结了一下TCP的连接与断开连接是发生的事情,其中还有很多的“坑”,让我们后续有时间再继续填吧。好了,完毕!
END OF FILE
注:本文转载自[http://www.cnblogs.com/stemon/p/4743974.html],感谢原作者